Модуль Lumenex – высококачественный антиалиазинг, HDR и анизотропная фильтрация
Модуль NVIDIA Lumenex, реализованный в чипах серии GeForce 8800, выводит на новый уровень технологии высококачественного антиалиазинга (AA) и анизотропной фильтрации (AF). Благодаря использованию как зональных (coverage), так и геометрических сэмплов, новая антиалиазинговая технология получила название Coverage Sampling Antialiasing (CSAA) при этом обеспечивается поддержка четырёх новых режимов мультисэмплированного антиалиазинга CSAA для видеокарт на одном GPU - 8x, 8xQ, 16x и 16xQ.
Каждый из новых режимов AA активизируется из панели управления драйвера NVIDIA, при этом необходимо выбрать опцию с названием Enhance the Application Setting. Первоначально для инициализации работы новых режимов А потребуется активизировать любой уровень АА в настройках игры, чтобы приложение правильно распределило и установило настройки поверхностей АА рендеринга. В случае, если игра не поддерживает АА, пользователь может установить в контрольной панели драйвера NVIDIA режим Override Any Applications Setting. Срабатывает, правда не в каждом случае.
Во многих игрушках новый режим 16x обеспечит частоту обновления кадра, сравнимую со стандартным 4x режимом мультисэмплирования, однако со значительно более высоким качеством картинки. Ниже – пример работы режима CSAA 16x по сравнению со стандартным 4X AA мультисэмплированием.
Чипы серии GeForce 8800 поддерживают процесс HDR (High Dynamic Range) рендеринга с 128-битной точностью, не только в режиме FP16 (64-битный цвет), но и FP32 (128-битный цвет), которые могут обрабатываться одновременно с процессом мультисэмплированного антиалиазинга. Это позволяет добиться реалистичных эффектов освещения и наложения теней, при этом обеспечивается высокая динамика и детализация самых затемнённых и самых светлых объектов. Представленный ниже скриншот лица новой виртуальной топ-модели NVIDIA – Адриенн Карри (Adrienne Curry), является отличной иллюстрацией уровня реализма, достигаемых при работе движка NVIDIA Lumenex в чипах GeForce 8800.
На иллюстрации ниже приведён пример работы анизотропной фильтрации (Anisotropic Filtering, AF), позволяющей добиться большей чёткости и резкости различных объектов, расположенных под острым углом и/или уходящих в перспективу. В комбинации с технологией множественного трилинейного текстурирования (с изменяющимся по мере удаления разрешением, trilinear mipmapping) анизотропная фильтрация позволяет снизить масштаб искажений и сделать картинку значительно чётче. На иллюстрации ниже: слева – изотропное множественное трилинейное текстурирование (Isotropic Trilinear MipMapping), справа – анизотропное множественное трилинейное текстурирование (Anisotropic Trilinear MipMapping).
Следует помнить, что анизотропная фильтрация весьма чувствительна к пропускной способности шины памяти, особенно на высоких уровнях AF. К примеру, режим 16xAF означает 16 билинейных считываний на каждый из двух смежных уровней множественного текстурирования (в сумме 128 обращений к памяти), усложнённых получением финальной попиксельной цветовой текстуры. Решения на базе чипов GeForce 8800 получили новую опцию в панели управления AF, названную Angular LOD Control и имеющую два режима - Quality и High Quality. На снимке ниже: AF у GeForce 7 (слева) против GeForce 8 с Angular LOD Texture Filtering в режиме High Quality (справа).
Технология NVIDIA Quantum Effects - физические эффекты
Новая технология NVIDIA Quantum Effects позволяет имитировать и рендерить множество новых физических эффектов с помощью нового поколения GeForce 8800.
Стрим-процессоры GeForce 8800 GTX в количестве 128 обеспечивают достаточный уровень мощности вычислений с плавающей запятой для достижения ряда новых реалистичных эффектов в играх, вроде дымки, огня, взрывов; реалистичной имитации движущихся волос, меха, воды. Разумеется, самые интересные игровые эффекты с эмуляцией физических явлений можно будет наблюдать после выхода DirectX 10 игр.
PureVideo и PureVideo HD
Технология NVIDIA PureVideo HD, хорошо известная в исполнении для всех современных видеокарт NVIDIA, также интегрирована в чипы GeForce 8800 и позволяет обеспечить высокое качество и плавное воспроизведение HD Video контента с носителей HD DVD и Blu-ray, при минимальном использовании ресурсов центрального процессора. Технология PureVideo HD является комплексным программно-аппаратным решением с поддержкой HDV форматов H.264, VC-1, WMV/WMV-HD и MPEG-2 HD. Помимо этого чипы GeForce 8800 поддерживают технологию PureVideo для работы со стандартными форматами WMV и MPEG-2. Защищённый AACS контент с носителей Blu-ray или HD DVD может воспроизводиться системами на базе GeForce 8800 с использованием AACS-совместимых плееров вроде CyberLink, InterVideo и Nero. Все карты GeForce 8800 обладают поддержкой системы защиты HDCP для дисков Blu-ray Disc и HD DVD, позволяя воспроизводить защищённое видео на ПК при использовании HDCP-совместимых дисплеев.
Поддержка Extreme High Definition Gaming
Все карты GeForce 8800 поддерживают игровые установки Extreme High Definition (XHD), при этом игры могут запускаться в широкоформатных режимах вплоть до 2560x1600 – это в семь раз превышает качество картинки HD телевизора 1080i и в два раза - HD формата 1080p. К этому стоит добавить, что двойной DVI интерфейс карты GeForce 8800 GTX позволяет обеспечить игровое качество XHD с разрешением 2560x1600 и высокими FPS.
Несвязанный обсчёт шейдеров, ветвление и Early-Z
На адресацию текстур, выборку и фильтрацию уходит определённое количество тактов GPU, и в случае необходимости выборки и фильтрации текстуры до выполнения следующей операции обсчёта в определённом шейдере, латентность этого процесса (например, в случае 16x AF) могут значительно замедлить работу GPU. В архитектуре GeForce 8800 предусмотрен щадящий режим работы и механизм "скрытия" латентности текстурной выборки с помощью одновременного исполнения ряда независимых математических операций. Если в пиксельном конвейере GeForce 7 обсчёт адреса текстуры перемежается с математическими FP шейдерными операциями, в модуле Shader Unit 1, то несвязанная независимая работа в шейдерными и текстурными операциями в GeForce 8800 снимает эту проблему.
Ещё один немаловажный аспект, от которого напрямую зависит общая производительность графической системы, особенно при обработке комплексных DX10 шейдеров – эффективность процесса ветвления. В отличие от чипов серии GeForce 7, "заточенных" на обработку типичных DirectX 9 шейдеров, артитектура GeForce 8800 разработана для обработки комплексных DX10 шейдеров, при этом производится ветвление 16 пикселей (тредов), в некоторых случаях – до 32 пикселей.
Что касается функционирования Z-буфера, в чипах GeForce 8800 GTX сортировка пикселей производится со скоростью, в четыре раза превосходящей этот процесс у GeForce 7900 GTX, поэтому GPU имеет возможность обрабатывать все сложные ситуации на уровне каждого пикселя. Z-сравнения данных о каждом пикселе производятся в модуле растеризатора - ROP (raster operations). Для увеличения производительности чипы GeForce 8800 поддерживают технологию Early-Z, позволяющую определить Z-значения пикселей до того как они поступают на конвейер пиксельного шейдера, благодаря этому увеличивается производительность и не производится ряд заведомо ненужных операций. Пример работы Early-Z показан на рисунках ниже.